Tuesday, January 31, 2012

Introsort implementation by Groovy.

Another groovy homework. this time Introsort.

From Wikipedia :
Introsort or introspective sort is a sorting algorithm designed by David Musser in 1997. It begins with quicksort and switches to heapsort when the recursion depth exceeds a level based on (the logarithm of) the number of elements being sorted. It is the best of both worlds, with a worst-case O(n log n) runtime and practical performance comparable to quicksort on typical data sets. Since both algorithms it uses are comparison sorts, it too is a comparison sort.

def introSort(list) {
// calculate the depth limit.
def depth = 2 * (int)(Math.log10(list.size()) / Math.log10(2))
return introLoop(list, depth)
}
def introLoop(list, depth) {
if (list.size() <= 1) {
return list
}
if (depth == 0) {
return heapSort(list)
}
depth--
//we need to use median of first, last and mid item in the list as pivot.
def pivot = list[0]
def partitions = list.groupBy { it <=> list[0] }.withDefault { [] }
return introLoop(partitions[-1], depth) + partitions[0] + introLoop(partitions[1], depth)
}
def heapSort(list) {
def size = list.size()
if (size < 2) {
return list
}
/*We need to create a valid binary heap first*/
heapify(list)
/*Remove the biggest element in the heap and make sure heap still is valid*/
(size - 1 .. 1).each {
/*Remove the biggest element*/
swap(list, 0, it)
/*Sift down to make a valid heap*/
siftDown(list, 0, it - 1)
}
return list
}
def heapify(list) {
def size = list.size()
/*Find the last parent in the heap*/
def parent = (int)size / 2 - 1
/*Sift down all parents starting for lowest levels up to root*/
while (parent != 0) {
siftDown(list, parent--, size - 1)
}
}
def siftDown(list, start, end) {
def parent = start
/*If there is any child for this parent, then check child(s) value to make sure parent is the biggest one*/
while (parent * 2 + 1 <= end) {
/*Given p is parent index, left child is in index of p*2 + 1 */
def leftChild = parent * 2 + 1
/*Right child is always after left child (if there is any right child)*/
def rightChild = leftChild + 1
/*Assume parent is the biggest value*/
def max = parent
/*If left child is bigger than parent then left child is a candidate to move up*/
if (list[leftChild] > list[max]) {
max = leftChild
}
/*If right child is exist its the bigges amoung parent, left and right, then right child needs to move up*/
if (rightChild <= end && list[rightChild] > list[max]) {
max = rightChild
}
/*If the parent is not the biggest one, swap it with biggest child and continue*/
if (max != parent) {
swap(list, parent, max)
parent = max
} else {
break
}
}
}
def swap(list, i, j) {
def temp = list[i]
list[i] = list[j]
list[j] = temp
}
assert [] == introSort([])
assert [1] == introSort([1])
assert [1,5] == introSort([5, 1])
assert [1,2,3,4,5] == introSort([5,1,4,3,2])

Friday, January 27, 2012

Log base 2 of an N-bit integer

Another Groovy training post. This time, three different method to find log base 2 of an N-bit integer.

Note: All algorithms and code credits goes to Bit Twiddling Hacks.



def log2First(v) {
def r = 0
while ((v >>= 1) != 0) r++
return r
}
def log2Second(v) {
def buffer = java.nio.ByteBuffer.allocate(8)
double d = buffer.putInt(0x43300000).putInt(v).getDouble(0) - 4503599627370496.0
return (buffer.putDouble(0, d).getInt(0) >> 20) - 0x3FF
}
def log2Third(v) {
def multiplyDeBruijnBitPosition = [
0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30,
8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31
]
[1,2,4,8,16].each { v |= v >> it }
return multiplyDeBruijnBitPosition[ (v * 0x07C4ACDD) >> 27 ]
}
(1..100).each {
assert log2First(it) == log2Second(it)
assert log2Second(it) == log2Third(it)
}


Note: All algorithms and code credits goes to Bit Twiddling Hacks.

Sunday, January 22, 2012

Priority Queue - Groovy Implementation

Here it is :), Another data structure, implemented by me in Groovy as part of my Groovy learning practices. Priority Queue.
class PriorityQueue {
/*a list to contains the queue elments in a binary heap format*/
def list = []
/*Add new item to the queue*/
def add(item) {
list.add(item)
/*After adding new item, we need to re-validate the heap*/
siftUp(list, 0, list.size() - 1)
}
def pop() {
if (list.isEmpty()) {
return null
}
def size = list.size()
/*if there are maximum two items in the queue, we just return the first (root) item in the heap*/
if (size < 3) {
return list.remove(0)
}
/*Remove the first (root) item and move the last item to first place (root) in the list*/
def item = list[0]
list[0] = list.remove(size - 1)
/*Revalidate the heap*/
siftDown(list, 0, size - 2)
return item
}
def peek() {
if (list.isEmpty()) {
return null
}
return list[0]
}
def isEmpty() {
return list.isEmpty()
}
def size() {
return list.size()
}
private siftDown(list, start, end) {
def p = start
while (p * 2 + 1 <= end) {
/*Find the left side child*/
def l = p * 2 + 1
/*Find the right side child*/
def r = l + 1
/*Assume parent is the maximum value.*/
def max = p
/*If left child is bigger than parrent then keep it as max value*/
if (list[max] < list[l]) {
max = l
}
/*If right child exist and its bigger than others (parent and left child) then keep it as max value*/
if (r <= end && list[max] < list[r]) {
max = r
}
/*If parent is the the biggest value, then swap it with the biggest value*/
if (p != max) {
def t = list[p]
list[p] = list[max]
list[max] = t
p = max
} else {
break
}
}
}
private siftUp(list, start, end) {
def c = end
while (c > start) {
/*Find the parent node*/
def p = (int)((end - 1) / 2)
/*if the parent is less than child, then swap them*/
if (list[p] < list[c]) {
def t = list[p]
list[p] = list[c]
list[c] = t
c = p
} else {
break
}
}
}
}
/****** Test ******/
def pq = new PriorityQueue()
assert true == pq.isEmpty(), 'the queue is empty'
assert 0 == pq.size(), 'the queue size should be 0'
assert null == pq.peek(), 'the queue is empty, so there should be nothing to peek'
assert null == pq.pop(), 'the queue is empty, so there should be nothing to pop'
pq.add(20)
assert false == pq.isEmpty(), 'quese is not empty anymore, there is one item (20) in the queue'
assert 1 == pq.size(), 'queue size must be 1'
assert 20 == pq.peek(), 'highest value in the queue is the 20'
assert 20 == pq.pop(), 'removing the highest value which is 20'
assert true == pq.isEmpty(), 'the queue is empty'
assert 0 == pq.size(), 'the queue size should be 0'
pq.add(20)
pq.add(30)
pq.add(50)
assert 50 == pq.peek(), 'the highest value must be 50'
assert 50 == pq.pop(), 'the highest value must be 50'
pq.add(10)
assert 30 == pq.peek(), 'the highest value must be 30'
assert 30 == pq.pop(), 'the highest value must be 30'

Friday, January 20, 2012

Quick Sort, My Groovy Implementation

My Groovy Implementation for QuickSort:
def quickSort(list) {
/*Make sure there are at least 2 elements in the list*/
if (list == null || list.size() < 2) {
return list
}
/*break the list to three different groups
group 1: with elements less than pivot
group 2: with elements equal to pivot
group 3: with elements greater than pivot */
def partitions = list.groupBy { it <=> list[0] }.withDefault { [] }
/* sort group 1 and 3 and merge them with group 3 */
return quickSort(partitions[-1]) + partitions[0] + quickSort(partitions[1])
}
assert [] == quickSort([])
assert [1] == quickSort([1])
assert [1,5] == quickSort([5, 1])
assert [1,2,3,4,5] == quickSort([5,1,4,3,2])

Tuesday, January 17, 2012

Heap Sort Implementation in Groovy

My Heap Sort Implementation in Groovy :
def heapSort(list) {
def size = list.size()
if (size < 2) {
return list
}
/*We need to create a valid binary heap first*/
heapify(list)
/*Remove the biggest element in the heap and make sure heap still is valid*/
(size - 1 .. 1).each {
/*Remove the biggest element*/
swap(list, 0, it)
/*Sift down to make a valid heap*/
siftDown(list, 0, it - 1)
}
return list
}
def heapify(list) {
def size = list.size()
/*Find the last parent in the heap*/
def parent = (int)size / 2 - 1
/*Sift down all parents starting for lowest levels up to root*/
while (parent != 0) {
siftDown(list, parent--, size - 1)
}
}
def siftDown(list, start, end) {
def parent = start
/*If there is any child for this parent, then check child(s) value to make sure parent is the biggest one*/
while (parent * 2 + 1 <= end) {
/*Given p is parent index, left child is in index of p*2 + 1 */
def leftChild = parent * 2 + 1
/*Right child is always after left child (if there is any right child)*/
def rightChild = leftChild + 1
/*Assume parent is the biggest value*/
def max = parent
/*If left child is bigger than parent then left child is a candidate to move up*/
if (list[leftChild] > list[max]) {
max = leftChild
}
/*If right child is exist its the bigges amoung parent, left and right, then right child needs to move up*/
if (rightChild <= end && list[rightChild] > list[max]) {
max = rightChild
}
/*If the parent is not the biggest one, swap it with biggest child and continue*/
if (max != parent) {
swap(list, parent, max)
parent = max
} else {
break
}
}
}
def swap(list, i, j) {
def temp = list[i]
list[i] = list[j]
list[j] = temp
}
assert [] == heapSort([])
assert [1] == heapSort([1])
assert [1,5] == heapSort([5, 1])
assert [1,2,3,4,5] == heapSort([5,1,4,3,2])

Tuesday, January 10, 2012

My Merge Sort in Groovy

I'm Learning Groovy :) and This is my groovy implementation of Merge Sort.
def mergeSort(list) {
def size = list.size()
if (size < 2) {
return list
} else {
def m = (int)(size / 2)
def left = list[0..<m]
def right = list[m..<size]
return merge(mergeSort(left), mergeSort(right))
}
}
def merge(left, right) {
def result = []
def l = 0
def r = 0
def lsize = left.size()
def rsize = right.size()
while (l < lsize && r < rsize){
result.add((left[l] <= right[r]) ? left[l++] : right[r++])
}
if (l < lsize) {
result += left[l..-1]
}
if (r < rsize) {
result += right[r..-1]
}
return result
}
assert [1,2,3,4,5] == mergeSort([1,5,3,2,4])